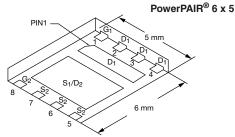
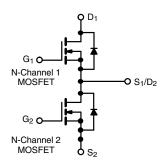


Dual N-Channel 30 V (D-S) MOSFETs

PRODUCT SUMMARY							
	V _{DS} (V)	$R_{DS(on)}(\Omega)$	I _D (A)	Q _g (Typ.)			
Channel-1	30	0.0072 at $V_{GS} = 10 \text{ V}$	24 ^a	13.5 nC			
Charmer-1	30	0.0092 at $V_{GS} = 4.5 \text{ V}$	24 ^a	13.5110			
Channel-2	nnel-2 30	0.0039 at V _{GS} = 10 V	28 ^a	34 nC			
Griannei-2		0.0047 at $V_{GS} = 4.5 \text{ V}$	28 ^a	34 110			


FEATURES

- Halogen-free According to IEC 61249-2-21 Definition
- TrenchFET® Power MOSFETs
- 100 % R_q and UIS Tested
- Compliant to RoHS Directive 2002/95/EC


HALOGEN FREE

APPLICATIONS

- Notebook System Power
- POL
- Synchronous Buck Converter

Ordering Information: SiZ900DT-T1-GE3 (Lead (Pb)-free and Halogen-free)

ABSOLUTE MAXIMUM RATINGS ((T _A = 25 °C, unle	ess otherwise	noted)		
Parameter		Symbol	Channel-1	Channel-2	Unit
Drain-Source Voltage		V_{DS}	30		V
Gate-Source Voltage		V_{GS}	±	V	
	T _C = 25 °C		24 ^a	28 ^a	٨
Continuous Drain Current (T. 150 °C)	T _C = 70 °C	1	24 ^a	28 ^a	
Continuous Drain Current (T _J = 150 °C)	T _A = 25 °C	lD	19 ^{b, c}	28 ^{b, c}	
	T _A = 70 °C	1 -	15.5 ^{b, c}	22 ^{b, c}	
Pulsed Drain Current		I _{DM}	90	110	Α
Continuous Source Drain Diode Current	T _C = 25 °C	- I _S	24 ^a	28 ^a	
Continuous Source Drain Diode Current	T _A = 25 °C		3.8 ^{b, c}	4.3 ^{b, c}	
Single Pulse Avalanche Current L = 0.1 mH		I _{AS}	20	35	
Single Pulse Avalanche Energy	L = 0.1 IIII1	E _{AS}	20	61	mJ
	T _C = 25 °C		48	100	
Maximum Dayyar Dissination	T _C = 70 °C	ь .	31	64	W
Maximum Power Dissipation	T _A = 25 °C	P _D	4.6 ^{b, c}	5.2 ^{b, c}	VV
	T _A = 70 °C	1	3 ^{b, c}	3.3 ^{b, c}	
Operating Junction and Storage Temperature Range	ge	T _J , T _{stg}	- 55 to 150		00
Soldering Recommendations (Peak Temperature) ^{d, e}			26	60	°C

THERMAL RESISTANCE RATINGS									
Parameter			Char	nel-1	Char	nel-2			
		Symbol	Тур.	Max.	Тур.	Max.	Unit		
Maximum Junction-to-Ambient ^{b, f}	t ≤ 10 s	R _{thJA}	22	27	19	24	°C/W		
Maximum Junction-to-Case (Drain)	Steady State	R_{thJC}	2.1	2.6	1	1.25	0/ / /		

Notes:

- a. Package limited.
- b. Surface mounted on 1" x 1" FR4 board.
- d. See solder profile (www.vishay.com/ppg?73257). The PowerPAIR is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.
- e. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components.
- f. Maximum under steady state conditions is 62 °C/W for channel-1 and 55 °C/W for channel-2.

Document Number: 67344 S11-1652-Rev. B, 15-Aug-11 www.vishay.com

Vishay Siliconix

Parameter		Min.	Тур.	Max.	Unit			
Static	Symbol					I		
D : 0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	Ch-1	30			.,	
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	Ch-2	30			V	
V Tananayahun Caaffiniant	A) / /T	I _D = 250 μA	Ch-1		32			
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	I _D = 250 μA	Ch-2		32		mV/°C	
V Tompovotive Coefficient	A)/ /T	I _D = 250 μA	Ch-1		- 6			
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	I _D = 250 μA	Ch-2		- 6.5			
Cata Thursday Id Valtage	V	$V_{DS} = V_{GS}, I_D = 250 \mu A$	Ch-1	1.2		2.4	2.4 V	
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	Ch-2	1		2.2	V	
Gate Source Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$	Ch-1			± 100	nA	
date double Leakage	GSS		Ch-2			± 100	11/4	
		$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$	Ch-1			1		
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$	Ch-2			1	μΑ	
Zoro date Voltage Diam current	.022	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 \text{ °C}$				5	μΛ	
		$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 ^{\circ}\text{C}$	Ch-2			5	1	
On State Dunin Command	la.	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	Ch-1	20			Λ	
On-State Drain Current ^D	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	Ch-2	25			Α	
		V _{GS} = 10 V, I _D = 19.4 A	Ch-1		0.0059	0.0072		
5 h	R _{DS(on)}	V _{GS} = 10 V, I _D = 20 A	Ch-2		0.0032	0.0039	Ω	
Drain-Source On-State Resistance ^b		$V_{GS} = 4.5 \text{ V}, I_D = 17.2 \text{ A}$	Ch-1		0.0075	0.0092		
		$V_{GS} = 4.5 \text{ V}, I_D = 20 \text{ A}$	Ch-2		0.0038	0.0047		
Facility of Table 1 and		V _{DS} = 10 V, I _D = 19.4 A	Ch-1		76			
Forward Transconductance ^b	9 _{fs}	V _{DS} = 10 V, I _D = 20 A	Ch-2		120		S	
Dynamic ^a								
Input Capacitance	C _{iss}		Ch-1		1830			
при Сараспансе	Oiss	Channel-1 $V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	Ch-2		4900		pF	
Output Capacitance	C _{oss}	VDS - 13 V, VGS - 0 V, I - 1 WILL	Ch-1		300			
	- 033	Channel-2	Ch-2		710			
Reverse Transfer Capacitance	C _{rss}	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	Ch-1		120			
·		V -15 V V -10 V L -10 4 A	Ch-2		280	45	<u> </u>	
		$V_{DS} = 15 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 19.4 \text{ A}$	Ch-1		29	45	nC	
Total Gate Charge	Q _g	$V_{DS} = 15 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}$	Ch-2		73	110		
		Channel-1	Ch-1 Ch-2		13.5	21 51		
		$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 19.4 \text{ A}$	Ch-1		34 5.8	31		
Gate-Source Charge	Q _{gs}	01	Ch-2		15			
	Q _{gd}	Channel-2 $V_{DS} = 15 \text{ V, } V_{GS} = 4.5 \text{ V, } I_{D} = 20 \text{ A}$			3.1		1	
Gate-Drain Charge					7.3		1	
Cata Basistanas	В	f = 1 MHz		0.5	2.4	4.8		
Gate Resistance	R_g			0.2	0.9	1.8	Ω	

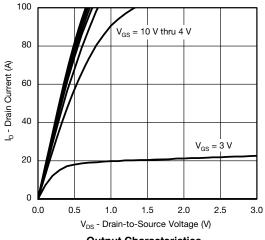
Notes:

a. Guaranteed by design, not subject to production testing. b. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2 %.

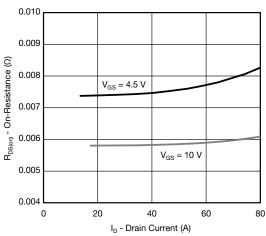
Vishay Siliconix

Parameter Symbo		Test Conditions	Min.	Тур.	Max.	Unit	
Dynamic ^a							
Turn-On Delay Time	t _{d(on)}	Channel-1	Ch-1		20	40	
•	2(31.)	$V_{DD} = 15 \text{ V, R}_{I} = 1.5 \Omega$	Ch-2		35	70	
Rise Time	t _r	$I_D \cong 10 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_q = 1 \Omega$	Ch-1 Ch-2		10	20	
		-	Ch-2		25	50	
Turn-Off Delay Time	$t_{d(off)}$	Channel-2	Ch-2		35	70	-
		V_{DD} = 15 V, R_L = 1.5 Ω $I_D \cong$ 10 A, V_{GEN} = 4.5 V, R_q = 1 Ω	Ch-1		10	20	
Fall Time	t _f	ID = 1071, VGEN = 4.0 V, Fig = 132	Ch-2		10	20	
T 0 D 1 T			Ch-1		15	30	ns
Turn-On Delay Time	t _{d(on)}	Channel-1	Ch-2		15	30	
Rise Time	t _r	$V_{DD} = 15 \text{ V}, R_L = 1.5 \Omega$	Ch-1		10	20	
nise Tille		$I_D \cong 10 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 1 \Omega$	Ch-2		7	15	
Turn-Off Delay Time	t _{d(off)}	Channel-2	Ch-1		30	60	
Tam on Boldy Time		$V_{DD} = 15 \text{ V}, R_{L} = 1.5 \Omega$	Ch-2		40	80	
Fall Time	t _f	$I_D \cong 10 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 1 \Omega$	Ch-1		10	20	
			Ch-2		10	20	
Drain-Source Body Diode Characteristi	cs			1	_		ı
Continuous Source-Drain Diode Current	I _S	T _C = 25 °C	Ch-1			24	-
	I _{SM}		Ch-2 Ch-1			28 90	Α
Pulse Diode Forward Current ^a			Ch-2			110	
		I _S = 10 A, V _{GS} = 0 V	Ch-1		0.8	1.2	
Body Diode Voltage	V_{SD}	I _S = 10 A, V _{GS} = 0 V	Ch-2		0.8	1.2	V
		3 - 7 43 -	Ch-1		16	30	
Body Diode Reverse Recovery Time	t _{rr}		Ch-2		30	60	ns
D D' D D O'		Channel-1	Ch-1		6	12	
Body Diode Reverse Recovery Charge	Q _{rr}	$I_F = 10 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s}, T_J = 25 ^{\circ}\text{C}$	Ch-2		21	40	nC
Reverse Recovery Fall Time	+	Channel-2	Ch-1		9		
neverse necovery rail fillie	t _a	$I_F = 10 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s}, T_J = 25 °\text{C}$	Ch-2		17		ns
Reverse Recovery Rise Time	t _b		Ch-1		7		115
Tiovoros riccovery riise riine			Ch-2		13		

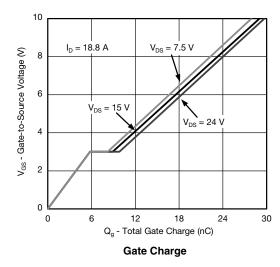
Notes:

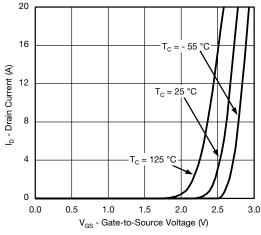

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

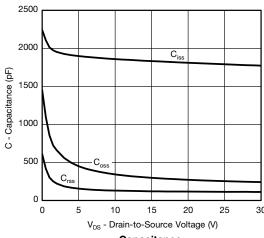
a. Guaranteed by design, not subject to production testing.


b. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.

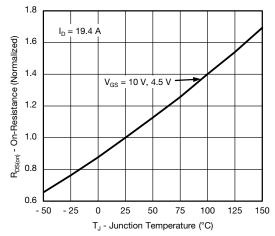
Vishay Siliconix


CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

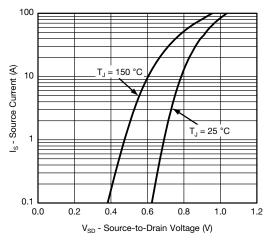


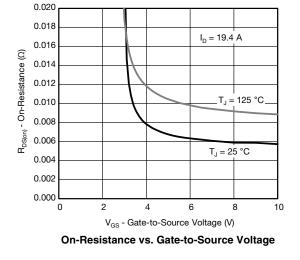


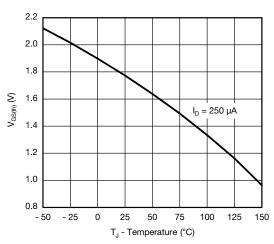
On-Resistance vs. Drain Current



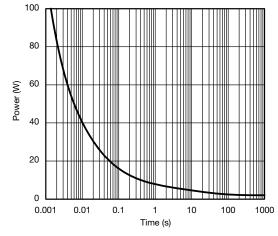
Transfer Characteristics


Capacitance

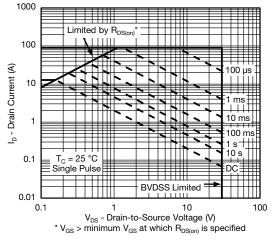

On-Resistance vs. Junction Temperature



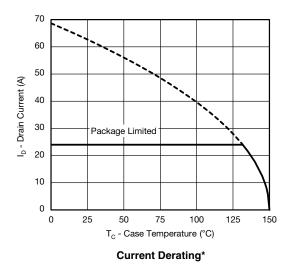
CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

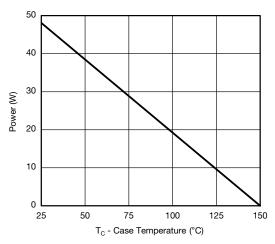


Source-Drain Diode Forward Voltage



Threshold Voltage

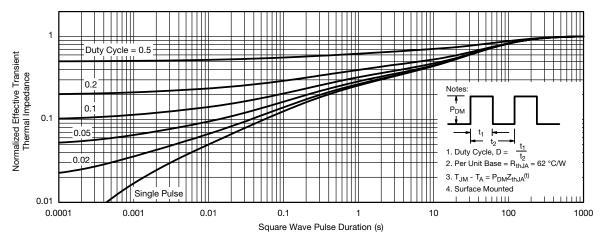

Single Pulse Power



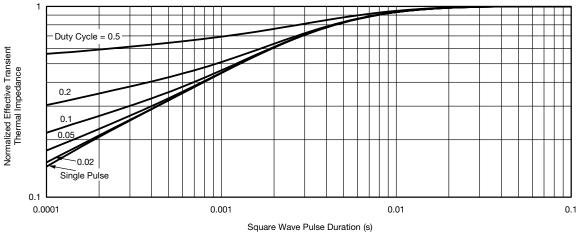
Safe Operating Area, Junction-to-Ambient

Vishay Siliconix

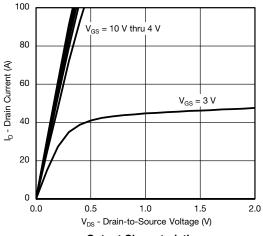
CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

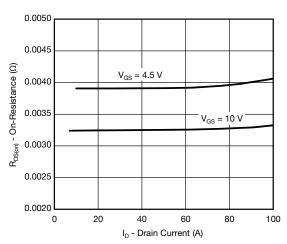


Power, Junction-to-Case

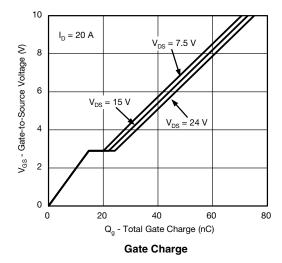

 $^{^{\}star}$ The power dissipation P_D is based on $T_{J(max)}$ = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

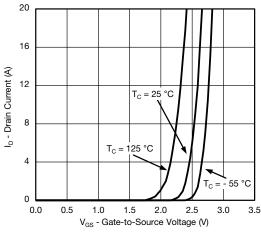
CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Normalized Thermal Transient Impedance, Junction-to-Ambient

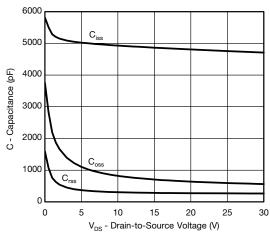

Normalized Thermal Transient Impedance, Junction-to-Case

Vishay Siliconix

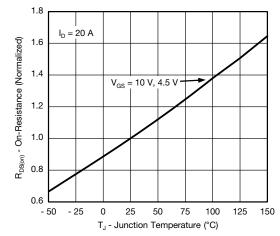

CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)



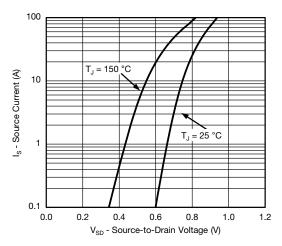
Output Characteristics

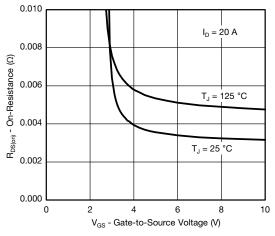


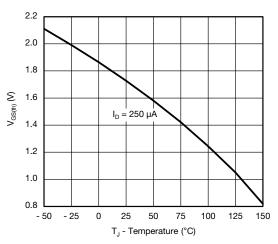
On-Resistance vs. Drain Current

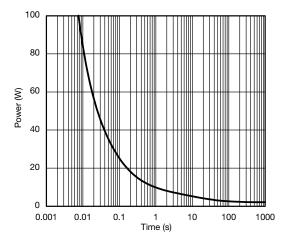


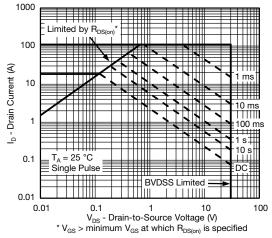
Transfer Characteristics


Capacitance

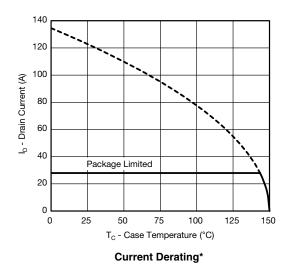

On-Resistance vs. Junction Temperature

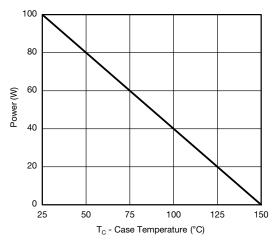

CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Source-Drain Diode Forward Voltage


On-Resistance vs. Gate-to-Source Voltage

Threshold Voltage

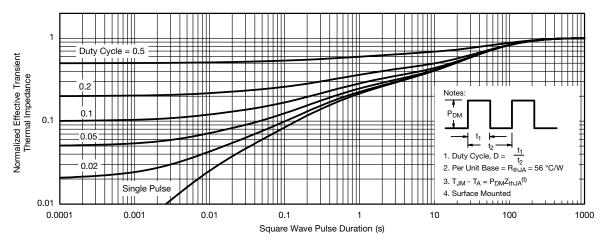

Single Pulse Power



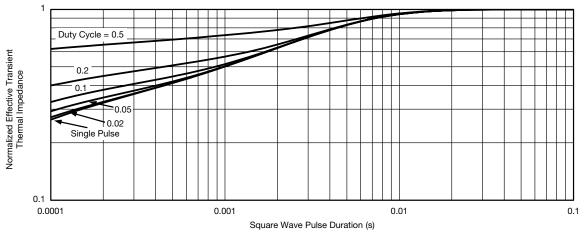
Safe Operating Area, Junction-to-Ambient

Vishay Siliconix

CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

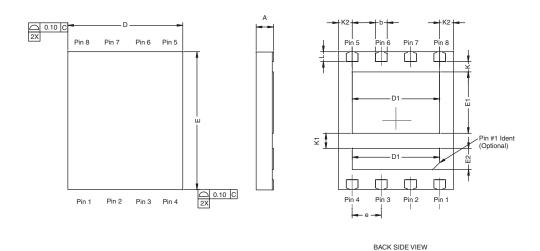


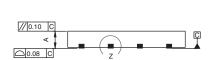
Power, Junction-to-Case

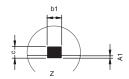

^{*} The power dissipation P_D is based on $T_{J(max)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Normalized Thermal Transient Impedance, Junction-to-Ambient

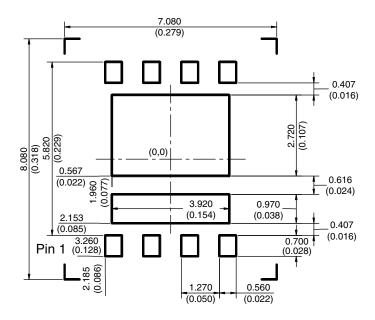



Normalized Thermal Transient Impedance, Junction-to-Case


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?67344.

Document Number: 67344 S11-1652-Rev. B, 15-Aug-11

PowerPAIR® 6 x 5 CASE OUTLINE



		MILLIMETERS		INCHES				
DIM.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		
Α	0.70	0.75	0.80	0.028	0.030	0.032		
A1	0.00	-	0.05	0.000	-	0.002		
b	0.46	0.51	0.56	0.018	0.020	0.022		
b1	0.20	0.25	0.38	0.008	0.010	0.015		
С	0.18	0.20	0.23	0.007	0.008	0.009		
D	4.92	5.00	5.08	0.194	0.197	0.200		
D1	3.67	3.80	3.92	0.144	0.150	0.154		
E	5.92	6.00	6.08	0.233	0.236	0.239		
E1	2.62	2.67	2.72	0.103	0.105	0.107		
E2	0.87	0.92	0.97	0.034	0.036	0.038		
е		1.27 BSC		0.05 BSC				
K		0.45 TYP.		0.018 TYP.				
K1	0.66 TYP.			0.026 TYP.				
K2	0.60 TYP.			0.024 TYP.				
L	0.38	0.43	0.48	0.015	0.017	0.019		

DWG: 5978

RECOMMENDED MINIMUM PAD FOR PowerPAIR® 6 x 5

Recommended Minimum Pad Dimensions in mm (inches)

Document Number: 67480 www.vishay.com Revision: 13-Jan-11

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com Revision: 11-Mar-11